Manufacturing process of support part
- Added: 03.11.2018
- Size: 9 MB
- Downloads: 2
Description
The purpose of course design is to consolidate and generalize the knowledge gained by students during lecture and practical classes. Course design should teach the student to use reference literature, GOST, tables, skillfully combining reference data with theoretical knowledge obtained during the course study.
Project's Content
|
|
|
|
Лист 1.cdw
|
Лист 2.cdw
|
Лист 3.cdw
|
Спецификация к 3 листу.spw
|
Курсовая Петраченко Д.В..doc
|
Операционные карты.doc
|
|
Лист 1.cdw
|
Лист 2.cdw
|
Лист 3.cdw
|
Спецификация к 3 листу.spw
|
Курсач 1.ч вся полностью.doc
|
Курсовая Петраченко Д.В..doc
|
|
|
Л.р.(пример).doc
|
|
Лабораторная работа 1.doc
|
|
Лабораторная работа 2.doc
|
Фрагмент.frw
|
|
|
Фрагмент.frw
|
Фрагмент1.frw
|
|
Фрагмент1.gif
|
Фрагмент2.gif
|
Фрагмент1.frw
|
Фрагмент1.gif
|
Фрагмент2.gif
|
|
Лабораторная работа 3.doc
|
|
Лабораторная работа 4.doc
|
|
|
ЕКТБ с дополнительными поверхностями.frw
|
Исправленный граф по оси К с дополнительными.frw
|
Исправленный граф по оси К с обработками.frw
|
Исправленный граф по оси М с дополнительными.frw
|
Исправленный граф по оси М с обработками.frw
|
Схема базирования ЕКТБ.frw
|
|
ЕКТБ с дополнительными поверхностями.gif
|
Исправленный граф по оси К с дополнительными.gif
|
Исправленный граф по оси К с обработками.gif
|
Исправленный граф по оси М с дополнительными.gif
|
Исправленный граф по оси М с обработками.gif
|
Схема базирования ЕКТБ.gif
|
ЕКТБ,таблица.xls
|
Л.р. №4 (ЕКТБ).xls
|
|
Лабораторная работа 5.doc
|
|
Граф макароны по оси K 2.frw
|
Граф макароны по оси K.frw
|
Макарона по оси K.frw
|
|
Граф макароны по оси N 2.frw
|
Граф макароны по оси N.frw
|
Макарона по оси N.frw
|
|
Граф макароны по оси М 2.frw
|
Граф макароны по оси М.frw
|
Макарона по оси М.frw
|
Desktop.ini
|
Наименование и номер операции.doc
|
Операционные карты.doc
|
Расчет уравнений.doc
|
Режимы резания таблица.doc
|
Результаты расчетов уравнений.doc
|
СОДЕРЖАНИЕ.doc
|
Таблица выбора оборудования.doc
|
Часть 2 (контроль детали и заготовка).doc
|
|
1.frw
|
10.frw
|
11.frw
|
12.frw
|
13.frw
|
14.frw
|
2.frw
|
3.frw
|
4.frw
|
5.frw
|
6.frw
|
7.frw
|
8.frw
|
9.frw
|
|
1.frw
|
10.frw
|
11.frw
|
12.frw
|
13.frw
|
14.frw
|
2.frw
|
3.frw
|
4.frw
|
5.frw
|
6.frw
|
7.frw
|
8.frw
|
9.frw
|
1.frw.bak
|
Для операционных карт.frw
|
К ОК.frw
|
Наименование и номер операции.frw
|
Отливка.frw
|
Фрагмент 2.frw
|
Фрагмент.frw
|
Эскиз приспособления.frw
|
Desktop.ini
|
Additional information
Contents
CONTENTS
INTRODUCTION
A. Tasks of engineering technology B. Purpose of the course project
B. Process Design Diagram
1. INPUT DATA
1.1. Design
1.1.1; Service assignment
A. Part functions in the mechanism
B. Original part sketch
B. Classification of surfaces of part 1.1.2. Shape and Material
A. Part parameters
B. Part Material Characteristics
1.2. Analysis
1.2.1. ESKD requirements
A. Dimensions
B. Tolerances
B. Roughness
D. Spatial deviations
D. Procurement requirements
1.2.2. Dimension Diagram
A. Source graphs
B. Necessary corrections
B. Corrected graphs
G. Corrected part sketch
1.3. Technological effectiveness
A. General Part Parameters B. Surface Parameters
B. Procurement parameters
1.4. Control
1.4.1. "Critical" requirements
A. Surface code B. Type of requirement
B. Nature of entry G. Numerical value D. Base length
1.4.2. Control methods A. Description
B. Diagram
1.5. Preparation
1.5.1. Possible methods
A. Name B. Limitations
B. Recommendations 1.5.2. Optimal method
A. Benefits
B. Quality of the workpiece
B. Non-surfaced surfaces
D. Mold/die sketch
2. PROCESS
2.1. Processing Methods
A. Surface code
B. Technical requirements
B. Transition codes
D. Processing sequence
D. Initial surface parameters
E. Parameters of the treated surface
2.2. Route
2.2.1. Process Steps
A. Stage distribution of transitions
B. Milestones
2.2.2. Synthesis of enlarged operations
A. Name and number of stage B. Name of operation
B. List of transitions
2.3. Basing
2.3.1. Single set of process bases
A. Analysis of the number of links
B. Selection of three machined surfaces
B. Identification of possible type of bases G. Development of ECT
D. ECT for all TP stages
2.3.2. Basing on First Operations
A. Objectives of operations
B. Basing tasks
B. Dimension graph of processing of ECT G. Basing schemes
D. Accuracy obtained
E. Rational scheme
2.3.3. Differentiation of transactions
A. Operation Name and Number B. Transition List
B. Basing tasks G. Basing scheme
D. Accuracy obtained
2.4. Dimensional Analysis
2.4.1. Minimum allowances
A. Surface code B. Transition code
B. Roughness and defective layer G. Allowance calculation
2.4.2. Dimensional Analysis
A. Dimensional diagram
B. Graph of closing dimensions
B. Processing dimension graph G. Dimensional chain equations
D. Calculation of operational dimensions
2.5. Cutting modes
A. Name and number of operation B. Name of transition
B. Tool view
D. Cutting part material
D. Input data
E. Calculation of cutting modes
J. Calculation of time standards
2.6. Equipment selection
A. Name and number of operation B. Name and model of the machine
B. Work area sketch
2.7. Operating cards
3. DEVICES
3.1. Service assignment
A. Name and number of operation B. Name of transitions
B. Location Diagram G. Installation Diagram
D. Processing requirements
E. Procurement
G. Machine name and model
3. Work Area Sketch
E. Name of instruments
3.2. Design Development
A. Tool Setup B. Datums
B. Clamping mechanism
D. Machine installation
D. Sketch of accessory
3.3. Calculation of accuracy
A. Processing requirements B. Dimensional diagrams
B. Distribution of tolerances
3.4. Power calculation
3.4.1. Clamping force required
A. Cutting forces
B. Force application diagram
B. Required clamping force G. Sufficient clamping force
3.4.2. Possible clamping force
A. Power parameters of the drive B. Mechanism diagram
B. Clamping force
CONCLUSION
A. Design problems
B. Project features
Literature
OPERATING CARDS (Appendix 1)
GRAPHIC MATERIAL (Annex 2)
Part Drawing
Workpiece Drawing
4 operational sketches
Assembly drawings of 2 accessories
Contents
Introduction
1 Initial data
1.1 Design
1.1.1 Service assignment
1.1.2. Shape and Material
1.2 Analysis
1.2.1. ESKD requirements
1.2.2. Dimension Diagram
1.3 Processability
1.4 Monitoring
1.4.1 "Critical" Requirements
1.4.2 Control methods
1.5 Procurement
1.5.1 Possible methods
1.5.2 Optimal method
2 Process
2.1 Processing Methods
2.2 Route
2.2.1 Process Steps
2.2.2 Synthesis of enlarged operations
2.3 Basing
2.3.1 Single set of process bases
2.3.2 Basing on first operations
2.3.3 Differentiation of operations
2.4 Dimensional Analysis
2.4.1 Minimum allowances
2.4.2 Dimensional Analysis
2.5 Cutting modes
2.6 Equipment Selection
2.7 Operating Cards
3 Accessories
3.1 Service Assignment
3.2 Design Development
3.3 Calculation of accuracy
3.4 Power calculation
3.4.1 Clamping force required
3.4.2 Possible clamping force
Conclusion
Literature
Conclusion
The course project contains many graphic constructions and drawings. In addition, minimum allowances were calculated, inter-operation dimensions were calculated, cutting modes were calculated, as well as fixture calculation.
During the design of the course project, experience in the design of the technological process was acquired, the previously passed theoretical material was fixed.
Design issues.
The following difficulties arose during the design: when calculating dimensional chains, the allowance for processing along different axes was not the same - therefore, it is necessary to expand the tolerances between dimensions or use other basing schemes.
Part Inspection
1.4.1 "Critical" Requirements
The most important accuracy parameters to be tested after machining are the parallel axis of the hole to the base surface and the perpendicular axis to the auxiliary surface.
The requirements for part inspection are:
- deviation from perpendicular;
- deviation from coaxiality;
- deviation from parallelism;
Deviation from parallelism of planes is defined as difference of readings of measuring head in two positions on specified length of regulated sections.
The tolerances of flatness, straightness, and parallelism in relative geometric accuracy A, B, and C are defined as 60, 40, and 25%, respectively, of the tolerance of the dimension rounded to the nearest number in the table.
Control shall be carried out by means of a check plate on which the part is installed by the base surface, and a measuring head moving parallel to the plate plane.
The selection of the perpendicular tolerance according to the tables depending on the accuracy of the linear dimensions and, according to CT CMEA 30276, shall be observed for all right angles regardless of the references in the drawings to unspecified tolerances.
If several axial dimensions of different accuracy are associated with the end face, then the unspecified tolerance of the end run-out is selected according to a more accurate quota. The base to which the unspecified tolerance belongs is the surface axis having a large length, at the same lengths - the surface with a diameter tolerance according to a more accurate quota, at the same ranges - the surface with a large diameter.
Check by angles at "lumen," by end measures of length or by measuring head.
The selection of the coaxiality tolerance at this degree of accuracy is made according to the diameter of the normalized surface or the size between the surfaces forming the symmetrical element normalized. If you do not specify a datum, the tolerance is determined by the large element.
The base to which the unspecified tolerance refers is a surface axis having a large length, with the same lengths - a surface with a tolerance, having a more accurate quota, with the same dimensions-element with a large size.
1.4.2 Control methods
During manufacturing, the part is subjected to linear dimensions, deviations from parallelism and perpendicular, as well as surface roughness. Depending on the required measurement accuracy, you can use measuring tables, centers, verification rulers, plates, special strings for these purposes. Control of linear dimensions is carried out using calipers, nutrometers, micrometers. Round meters are used to measure deviations from the roundness. Round meters with special devices can be used to measure the concentricity of surfaces of parts such as a sleeve, to measure deviations from flatness. Surface roughness parameters are controlled either by comparison with samples, or by determining the values of these parameters using special devices.
Preparation
1.5.1 Possible methods
To obtain a blank, we consider two possible methods for producing blanks: casting into sandy-clay molds and casting into a chill.
Foundry is the most important branch of mechanical engineering. In machines and industrial equipment, the proportion of cast parts is about 50%, and in metal cutting machines, hammers, presses about 75%.
Casting is the technological process of making cast blanks by pouring liquid metal into a special mold with subsequent solidification of the metal. Casting is carried out through a system of channels (flight system), which is formed simultaneously with the casting mold.
Depending on the multiplicity of use, all molds are divided into one-time (sandy) molds, which are designed for 1 pouring with metal and are always destroyed when castings are extracted from them, and permanent (metal) ones, to obtain hundreds, thousands of castings. Sand casting has become the most widespread due to the simplicity of the ability to obtain a cast of a simple and complex configuration.
The field of application of a casting method is determined by the volume of production, the requirements for geometric accuracy and roughness of the casting surface, economic feasibility and other factors.
Coke casting is used in mass and mass production for the manufacture of castings from cast iron, steel and non-ferrous metal alloys with a wall thickness of 3100 mm and a mass of several tens of grams to several tens of kilograms.
When casting into a chill, the consumption of molding and rod mixtures is reduced. Solidification of castings occurs in conditions of intensive removal of heat from poured metal, which provides more density of metal and mechanical properties than castings obtained in sand-clay forms. Coke castings have high geometric accuracy of dimensions and low surface roughness, which reduces machining allowance by half compared to casting in sand-clay molds. This casting method is high performance.
The disadvantages of cocky casting are: the high labor intensity of making cockles, their limited resistance, and the difficulty of manufacturing complex castings.
Casting into sandy-clay molds allows the production of blanks for mass production. The main advantages of casting into sandy-clay molds are the simplicity and relative cheapness of producing blanks. Automation methods allow you to use this method for large-scale and mass production. Automation of casting of molds provides high accuracy of metering of metal, facilitates the work of the casting machine and increases labor productivity.
Casting of accuracy class 8 is provided by manual moulding into sandy-clay forms, as well as machine moulding along coordinate plates with loose models
We choose sand-clay casting as the most optimal method for producing castings.
Лист 1.cdw
Лист 2.cdw
Лист 3.cdw
Спецификация к 3 листу.spw
Лист 1.cdw
Лист 2.cdw
Лист 3.cdw
Спецификация к 3 листу.spw
Фрагмент.frw
Фрагмент.frw
Фрагмент1.frw
Фрагмент1.frw
ЕКТБ с дополнительными поверхностями.frw
Исправленный граф по оси К с дополнительными.frw
Исправленный граф по оси К с обработками.frw
Исправленный граф по оси М с дополнительными.frw
Исправленный граф по оси М с обработками.frw
Схема базирования ЕКТБ.frw
Граф макароны по оси K 2.frw
Граф макароны по оси K.frw
Макарона по оси K.frw
Граф макароны по оси N 2.frw
Граф макароны по оси N.frw
Макарона по оси N.frw
Граф макароны по оси М 2.frw
Граф макароны по оси М.frw
Макарона по оси М.frw
1.frw
10.frw
11.frw
12.frw
13.frw
14.frw
2.frw
3.frw
4.frw
5.frw
6.frw
7.frw
8.frw
9.frw
1.frw
10.frw
11.frw
12.frw
13.frw
14.frw
2.frw
3.frw
4.frw
5.frw
6.frw
7.frw
8.frw
9.frw
Для операционных карт.frw
К ОК.frw
Отливка.frw
Фрагмент 2.frw
Фрагмент.frw
Эскиз приспособления.frw
Similar materials
- 13.12.2022
- 01.07.2014