• RU
  • icon Waiting For Moderation: 20
Menu

Manufacturing process of support part

  • Added: 03.11.2018
  • Size: 9 MB
  • Downloads: 2
Find out how to download this material

Description

The purpose of course design is to consolidate and generalize the knowledge gained by students during lecture and practical classes. Course design should teach the student to use reference literature, GOST, tables, skillfully combining reference data with theoretical knowledge obtained during the course study.

Project's Content

icon
icon
icon
icon
icon Лист 1.cdw
icon Лист 2.cdw
icon Лист 3.cdw
icon Спецификация к 3 листу.spw
icon Курсовая Петраченко Д.В..doc
icon Операционные карты.doc
icon
icon Лист 1.cdw
icon Лист 2.cdw
icon Лист 3.cdw
icon Спецификация к 3 листу.spw
icon Курсач 1.ч вся полностью.doc
icon Курсовая Петраченко Д.В..doc
icon
icon
icon Л.р.(пример).doc
icon
icon Лабораторная работа 1.doc
icon
icon Лабораторная работа 2.doc
icon Фрагмент.frw
icon
icon
icon Фрагмент.frw
icon Фрагмент1.frw
icon
icon Фрагмент1.gif
icon Фрагмент2.gif
icon Фрагмент1.frw
icon Фрагмент1.gif
icon Фрагмент2.gif
icon
icon Лабораторная работа 3.doc
icon
icon Лабораторная работа 4.doc
icon
icon
icon ЕКТБ с дополнительными поверхностями.frw
icon Исправленный граф по оси К с дополнительными.frw
icon Исправленный граф по оси К с обработками.frw
icon Исправленный граф по оси М с дополнительными.frw
icon Исправленный граф по оси М с обработками.frw
icon Схема базирования ЕКТБ.frw
icon
icon ЕКТБ с дополнительными поверхностями.gif
icon Исправленный граф по оси К с дополнительными.gif
icon Исправленный граф по оси К с обработками.gif
icon Исправленный граф по оси М с дополнительными.gif
icon Исправленный граф по оси М с обработками.gif
icon Схема базирования ЕКТБ.gif
icon ЕКТБ,таблица.xls
icon Л.р. №4 (ЕКТБ).xls
icon
icon Лабораторная работа 5.doc
icon
icon Граф макароны по оси K 2.frw
icon Граф макароны по оси K.frw
icon Макарона по оси K.frw
icon
icon Граф макароны по оси N 2.frw
icon Граф макароны по оси N.frw
icon Макарона по оси N.frw
icon
icon Граф макароны по оси М 2.frw
icon Граф макароны по оси М.frw
icon Макарона по оси М.frw
icon Desktop.ini
icon Наименование и номер операции.doc
icon Операционные карты.doc
icon Расчет уравнений.doc
icon Режимы резания таблица.doc
icon Результаты расчетов уравнений.doc
icon СОДЕРЖАНИЕ.doc
icon Таблица выбора оборудования.doc
icon Часть 2 (контроль детали и заготовка).doc
icon
icon 1.frw
icon 10.frw
icon 11.frw
icon 12.frw
icon 13.frw
icon 14.frw
icon 2.frw
icon 3.frw
icon 4.frw
icon 5.frw
icon 6.frw
icon 7.frw
icon 8.frw
icon 9.frw
icon
icon 1.frw
icon 10.frw
icon 11.frw
icon 12.frw
icon 13.frw
icon 14.frw
icon 2.frw
icon 3.frw
icon 4.frw
icon 5.frw
icon 6.frw
icon 7.frw
icon 8.frw
icon 9.frw
icon 1.frw.bak
icon Для операционных карт.frw
icon К ОК.frw
icon Наименование и номер операции.frw
icon Отливка.frw
icon Фрагмент 2.frw
icon Фрагмент.frw
icon Эскиз приспособления.frw
icon Desktop.ini

Additional information

Contents

CONTENTS

INTRODUCTION

A. Tasks of engineering technology B. Purpose of the course project

B. Process Design Diagram

1. INPUT DATA

1.1. Design

1.1.1; Service assignment

A. Part functions in the mechanism

B. Original part sketch

B. Classification of surfaces of part 1.1.2. Shape and Material

A. Part parameters

B. Part Material Characteristics

1.2. Analysis

1.2.1. ESKD requirements

A. Dimensions

B. Tolerances

B. Roughness

D. Spatial deviations

D. Procurement requirements

1.2.2. Dimension Diagram

A. Source graphs

B. Necessary corrections

B. Corrected graphs

G. Corrected part sketch

1.3. Technological effectiveness

A. General Part Parameters B. Surface Parameters

B. Procurement parameters

1.4. Control

1.4.1. "Critical" requirements

A. Surface code B. Type of requirement

B. Nature of entry G. Numerical value D. Base length

1.4.2. Control methods A. Description

B. Diagram

1.5. Preparation

1.5.1. Possible methods

A. Name B. Limitations

B. Recommendations 1.5.2. Optimal method

A. Benefits

B. Quality of the workpiece

B. Non-surfaced surfaces

D. Mold/die sketch

2. PROCESS

2.1. Processing Methods

A. Surface code

B. Technical requirements

B. Transition codes

D. Processing sequence

D. Initial surface parameters

E. Parameters of the treated surface

2.2. Route

2.2.1. Process Steps

A. Stage distribution of transitions

B. Milestones

2.2.2. Synthesis of enlarged operations

A. Name and number of stage B. Name of operation

B. List of transitions

2.3. Basing

2.3.1. Single set of process bases

A. Analysis of the number of links

B. Selection of three machined surfaces

B. Identification of possible type of bases G. Development of ECT

D. ECT for all TP stages

2.3.2. Basing on First Operations

A. Objectives of operations

B. Basing tasks

B. Dimension graph of processing of ECT G. Basing schemes

D. Accuracy obtained

E. Rational scheme

2.3.3. Differentiation of transactions

A. Operation Name and Number B. Transition List

B. Basing tasks G. Basing scheme

D. Accuracy obtained

2.4. Dimensional Analysis

2.4.1. Minimum allowances

A. Surface code B. Transition code

B. Roughness and defective layer G. Allowance calculation

2.4.2. Dimensional Analysis

A. Dimensional diagram

B. Graph of closing dimensions

B. Processing dimension graph G. Dimensional chain equations

D. Calculation of operational dimensions

2.5. Cutting modes

A. Name and number of operation B. Name of transition

B. Tool view

D. Cutting part material

D. Input data

E. Calculation of cutting modes

J. Calculation of time standards

2.6. Equipment selection

A. Name and number of operation B. Name and model of the machine

B. Work area sketch

2.7. Operating cards

3. DEVICES

3.1. Service assignment

A. Name and number of operation B. Name of transitions

B. Location Diagram G. Installation Diagram

D. Processing requirements

E. Procurement

G. Machine name and model

3. Work Area Sketch

E. Name of instruments

3.2. Design Development

A. Tool Setup B. Datums

B. Clamping mechanism

D. Machine installation

D. Sketch of accessory

3.3. Calculation of accuracy

A. Processing requirements B. Dimensional diagrams

B. Distribution of tolerances

3.4. Power calculation

3.4.1. Clamping force required

A. Cutting forces

B. Force application diagram

B. Required clamping force G. Sufficient clamping force

3.4.2. Possible clamping force

A. Power parameters of the drive B. Mechanism diagram

B. Clamping force

CONCLUSION

A. Design problems

B. Project features

Literature

OPERATING CARDS (Appendix 1)

GRAPHIC MATERIAL (Annex 2)

Part Drawing

Workpiece Drawing

4 operational sketches

Assembly drawings of 2 accessories

Contents

Introduction

1 Initial data

1.1 Design

1.1.1 Service assignment

1.1.2. Shape and Material

1.2 Analysis

1.2.1. ESKD requirements

1.2.2. Dimension Diagram

1.3 Processability

1.4 Monitoring

1.4.1 "Critical" Requirements

1.4.2 Control methods

1.5 Procurement

1.5.1 Possible methods

1.5.2 Optimal method

2 Process

2.1 Processing Methods

2.2 Route

2.2.1 Process Steps

2.2.2 Synthesis of enlarged operations

2.3 Basing

2.3.1 Single set of process bases

2.3.2 Basing on first operations

2.3.3 Differentiation of operations

2.4 Dimensional Analysis

2.4.1 Minimum allowances

2.4.2 Dimensional Analysis

2.5 Cutting modes

2.6 Equipment Selection

2.7 Operating Cards

3 Accessories

3.1 Service Assignment

3.2 Design Development

3.3 Calculation of accuracy

3.4 Power calculation

3.4.1 Clamping force required

3.4.2 Possible clamping force

Conclusion

Literature

Conclusion

The course project contains many graphic constructions and drawings. In addition, minimum allowances were calculated, inter-operation dimensions were calculated, cutting modes were calculated, as well as fixture calculation.

During the design of the course project, experience in the design of the technological process was acquired, the previously passed theoretical material was fixed.

Design issues.

The following difficulties arose during the design: when calculating dimensional chains, the allowance for processing along different axes was not the same - therefore, it is necessary to expand the tolerances between dimensions or use other basing schemes.

Part Inspection

1.4.1 "Critical" Requirements

The most important accuracy parameters to be tested after machining are the parallel axis of the hole to the base surface and the perpendicular axis to the auxiliary surface.

The requirements for part inspection are:

- deviation from perpendicular;

- deviation from coaxiality;

- deviation from parallelism;

Deviation from parallelism of planes is defined as difference of readings of measuring head in two positions on specified length of regulated sections.

The tolerances of flatness, straightness, and parallelism in relative geometric accuracy A, B, and C are defined as 60, 40, and 25%, respectively, of the tolerance of the dimension rounded to the nearest number in the table.

Control shall be carried out by means of a check plate on which the part is installed by the base surface, and a measuring head moving parallel to the plate plane.

The selection of the perpendicular tolerance according to the tables depending on the accuracy of the linear dimensions and, according to CT CMEA 30276, shall be observed for all right angles regardless of the references in the drawings to unspecified tolerances.

If several axial dimensions of different accuracy are associated with the end face, then the unspecified tolerance of the end run-out is selected according to a more accurate quota. The base to which the unspecified tolerance belongs is the surface axis having a large length, at the same lengths - the surface with a diameter tolerance according to a more accurate quota, at the same ranges - the surface with a large diameter.

Check by angles at "lumen," by end measures of length or by measuring head.

The selection of the coaxiality tolerance at this degree of accuracy is made according to the diameter of the normalized surface or the size between the surfaces forming the symmetrical element normalized. If you do not specify a datum, the tolerance is determined by the large element.

The base to which the unspecified tolerance refers is a surface axis having a large length, with the same lengths - a surface with a tolerance, having a more accurate quota, with the same dimensions-element with a large size.

1.4.2 Control methods

During manufacturing, the part is subjected to linear dimensions, deviations from parallelism and perpendicular, as well as surface roughness. Depending on the required measurement accuracy, you can use measuring tables, centers, verification rulers, plates, special strings for these purposes. Control of linear dimensions is carried out using calipers, nutrometers, micrometers. Round meters are used to measure deviations from the roundness. Round meters with special devices can be used to measure the concentricity of surfaces of parts such as a sleeve, to measure deviations from flatness. Surface roughness parameters are controlled either by comparison with samples, or by determining the values ​ ​ of these parameters using special devices.

Preparation

1.5.1 Possible methods

To obtain a blank, we consider two possible methods for producing blanks: casting into sandy-clay molds and casting into a chill.

Foundry is the most important branch of mechanical engineering. In machines and industrial equipment, the proportion of cast parts is about 50%, and in metal cutting machines, hammers, presses about 75%.

Casting is the technological process of making cast blanks by pouring liquid metal into a special mold with subsequent solidification of the metal. Casting is carried out through a system of channels (flight system), which is formed simultaneously with the casting mold.

Depending on the multiplicity of use, all molds are divided into one-time (sandy) molds, which are designed for 1 pouring with metal and are always destroyed when castings are extracted from them, and permanent (metal) ones, to obtain hundreds, thousands of castings. Sand casting has become the most widespread due to the simplicity of the ability to obtain a cast of a simple and complex configuration.

The field of application of a casting method is determined by the volume of production, the requirements for geometric accuracy and roughness of the casting surface, economic feasibility and other factors.

Coke casting is used in mass and mass production for the manufacture of castings from cast iron, steel and non-ferrous metal alloys with a wall thickness of 3100 mm and a mass of several tens of grams to several tens of kilograms.

When casting into a chill, the consumption of molding and rod mixtures is reduced. Solidification of castings occurs in conditions of intensive removal of heat from poured metal, which provides more density of metal and mechanical properties than castings obtained in sand-clay forms. Coke castings have high geometric accuracy of dimensions and low surface roughness, which reduces machining allowance by half compared to casting in sand-clay molds. This casting method is high performance.

The disadvantages of cocky casting are: the high labor intensity of making cockles, their limited resistance, and the difficulty of manufacturing complex castings.

Casting into sandy-clay molds allows the production of blanks for mass production. The main advantages of casting into sandy-clay molds are the simplicity and relative cheapness of producing blanks. Automation methods allow you to use this method for large-scale and mass production. Automation of casting of molds provides high accuracy of metering of metal, facilitates the work of the casting machine and increases labor productivity.

Casting of accuracy class 8 is provided by manual moulding into sandy-clay forms, as well as machine moulding along coordinate plates with loose models

We choose sand-clay casting as the most optimal method for producing castings.

Drawings content

icon Лист 1.cdw

Лист 1.cdw

icon Лист 2.cdw

Лист 2.cdw

icon Лист 3.cdw

Лист 3.cdw

icon Спецификация к 3 листу.spw

Спецификация к 3 листу.spw

icon Лист 1.cdw

Лист 1.cdw

icon Лист 2.cdw

Лист 2.cdw

icon Лист 3.cdw

Лист 3.cdw

icon Спецификация к 3 листу.spw

Спецификация к 3 листу.spw

icon Фрагмент.frw

Фрагмент.frw

icon Фрагмент.frw

Фрагмент.frw

icon Фрагмент1.frw

Фрагмент1.frw

icon Фрагмент1.frw

Фрагмент1.frw

icon ЕКТБ с дополнительными поверхностями.frw

ЕКТБ с дополнительными поверхностями.frw

icon Исправленный граф по оси К с дополнительными.frw

Исправленный граф по оси К с дополнительными.frw

icon Исправленный граф по оси К с обработками.frw

Исправленный граф по оси К с обработками.frw

icon Исправленный граф по оси М с дополнительными.frw

Исправленный граф по оси М с дополнительными.frw

icon Исправленный граф по оси М с обработками.frw

Исправленный граф по оси М с обработками.frw

icon Схема базирования ЕКТБ.frw

Схема базирования ЕКТБ.frw

icon Граф макароны по оси K 2.frw

Граф макароны по оси K 2.frw

icon Граф макароны по оси K.frw

Граф макароны по оси K.frw

icon Макарона по оси K.frw

Макарона по оси K.frw

icon Граф макароны по оси N 2.frw

Граф макароны по оси N 2.frw

icon Граф макароны по оси N.frw

Граф макароны по оси N.frw

icon Макарона по оси N.frw

Макарона по оси N.frw

icon Граф макароны по оси М 2.frw

Граф макароны по оси М 2.frw

icon Граф макароны по оси М.frw

Граф макароны по оси М.frw

icon Макарона по оси М.frw

Макарона по оси М.frw

icon 1.frw

1.frw

icon 10.frw

10.frw

icon 11.frw

11.frw

icon 12.frw

12.frw

icon 13.frw

13.frw

icon 14.frw

14.frw

icon 2.frw

2.frw

icon 3.frw

3.frw

icon 4.frw

4.frw

icon 5.frw

5.frw

icon 6.frw

6.frw

icon 7.frw

7.frw

icon 8.frw

8.frw

icon 9.frw

9.frw

icon 1.frw

1.frw

icon 10.frw

10.frw

icon 11.frw

11.frw

icon 12.frw

12.frw

icon 13.frw

13.frw

icon 14.frw

14.frw

icon 2.frw

2.frw

icon 3.frw

3.frw

icon 4.frw

4.frw

icon 5.frw

5.frw

icon 6.frw

6.frw

icon 7.frw

7.frw

icon 8.frw

8.frw

icon 9.frw

9.frw

icon Для операционных карт.frw

Для операционных карт.frw

icon К ОК.frw

К ОК.frw

icon Отливка.frw

Отливка.frw

icon Фрагмент 2.frw

Фрагмент 2.frw

icon Фрагмент.frw

Фрагмент.frw

icon Эскиз приспособления.frw

Эскиз приспособления.frw
up Up