Reconstruction project of the central heat station (CTP) in the village. Cedar-2 - Thesis, sections: TX, EM, EO, AK

- Added: 09.07.2014
- Size: 15 MB
- Downloads: 6
Description
Project's Content
![]() |
![]() |
![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
![]() ![]() ![]() ![]() |
Additional information
2. Integrated Automation
2.1. General part
The CTP automation system is designed to effectively solve problems without direct human intervention. CTP houses equipment, valves, monitoring, control and automation devices, through which:
• regulation of thermal energy supply for heating of buildings;
• protection of local systems from emergency increase of coolant parameters;
• control of pumps actuation and disconnection (actuation of standby pumps in case of main failure).
• water treatment for hot water supply system;
• monitoring of coolant parameters;
• commercial accounting of heat and water consumption.
The mode of operation of automation systems is constant throughout the year, with the exception of periods of scheduled scheduled and forced repairs.
2.2. Temperature control of hot water supply (HWS).
To maintain the specified temperature of hot water, a control valve installed on the supply pipeline of the network coolant supplied to the second stage of the heat exchanger of the hot water supply system is used. The stem of the VB2 type control valve is moved by an electric actuator (AMV 30 drive), which receives a command from the ECL Comfort 300 controller when the hot water temperature deviates from the set one.
Temperature control in the hot water supply system is carried out using a sensor installed on the hot water pipeline to consumers. The sensor signal corresponding to the current hot water temperature value is supplied to the ECL Comfort 301 controller and is converted into a command to the control valve actuator.
Control of the specified hot water temperature in the GVA system is carried out according to PID - regulation law.
The control algorithm allows you to adjust the temperature of hot water from the ECL Comfort 300 regulator from plus 45 ° C to plus 70 ° C.
The transition time shall be determined during setup and shall not exceed 5 minutes.
2.3. Temperature control in the heating system.
For heat supply to consumers, a dependent connection of the heating system of a residential building with the installation of mixing pumps is adopted .
A control valve is installed on the heating supply pipeline from the heat network, which changes the coolant flow rate through heat exchangers.
The temperature of the coolant in the building heating system is controlled according to the approved temperature schedule, depending on the outside air temperature. The outdoor temperature sensor is located on the north side of the building outside the lighting area with direct sunlight.
Information from temperature sensors is transmitted to ECL Comfort 300 regulator and converted into commands to control valve actuator. Temperature control in the heating system is carried out according to PID - the regulation law.
When the temperature in the feed line deviates from the schedule, the ECL Comfort 300 controller commands the actuator of the control valve. Movement of the control valve rod ensures change of coolant flow rate from the heat network through heat exchangers.
Temperature deviation in the heating system supply pipeline from the specified one shall not exceed ± 1.5 ° С.
ECL Comfort 300 regulator ensures that the temperature of the coolant returned to the heating system is not exceeded by the temperature schedule.
2.4. Maintain the assigned MV pressure.
The process part of the design provides for maintaining the specified pressure in the supply pipeline of the GVA. To maintain the specified pressure, pressure increase pumps WILO MVI 16036 are installed on the CBS pipeline. A control cabinet with frequency converters is used for automatic pressure maintenance.
Failover
If one of the pumps indicates a fault, it is immediately shut down and the standby one is switched on.
Lack of water
A special inlet pressure sensor, via a potential-free contact, signals the control system about a lack of water. After the set time T1, the pumps are shut down. During the set time T1 in case of lack of water the pumps are not switched off. The plant is switched on immediately after the water deficiency signal has disappeared.
In case of lack of water, the generalized fault alarm is activated and the dry LED lights up. Turning the red button resets the fault message and returns the generalized fault alarm to its original state.
Overpressure
To protect building engineering, an overpressure limit can be set. If the system pressure is kept above this limit for 3 seconds, the pumps are immediately shut down, the generalized fault alarm is turned on and the overpressure LED lights up.
As soon as the system pressure drops below the limit, the overpressure LED starts flashing. The unit should be re-activated 1 second after the system pressure drops below the set limit. After the fault is cleared, the generalized alarm and the overpressure LED return to their original state.
00.00_Обложка.dwg

01.00_Титул.dwg

02.00_Содержание.dwg

03.00_Состав проекта.dwg

01.01_Общие данные.dwg

01.02_Общие_данные.dwg

01.03_Общие_данные.dwg

02.00_Расчет эл.нагрузок.dwg

03.00_Расчет сеч.кабелей.dwg

04.00_Схема эл снабжен.dwg

05.00_ШР.Принцип.схема.dwg

06.00_ШУН.Принцип.схема.dwg

07.00_Шкаф Ш.АВР.Схема эл.принц.dwg

08.01_Разводка кабелей.dwg

08.02_Разводка кабелей.dwg

09.00_Кабельнотрубный журнал.dwg

10.00_Трубная разводка.dwg

11.00_Заземление.dwg

12.00_Уравнив. потенц..dwg

ОЛ_Опросный лист.dwg

С.01_Начало.dwg

С.02_Продолжение.dwg

С.03_Продолжение.dwg

01.01_Общие данные.dwg

01.02_Общие данные.dwg

02.00_Щиток.dwg

03.00_План.dwg

С.01_Начало.dwg

С.02_Продолжение.dwg

С.03_Продолжение.dwg

01.01_Общие данные.dwg

01.02_Общие_данные.dwg

01.03_Общие_данные.dwg

01.04_Общие_данные.dwg

01.05_Общие_данные.dwg

02.01_Принц_схема.dwg

02.02_Спец.dwg

02.03_Трубы.dwg

03.00_Ситуац_план.dwg

04.00_План оборуд.dwg

05.00_План_труб.dwg

06.01_Разрез 1.dwg

06.02_Разрез 2.dwg

06.03_Разрез 3.dwg

06.04_Разрез 4.dwg

06.05_Разрез 5.dwg

08.01_Вед_изол.dwg

08.02_Расч_изол.dwg

09.01_План_дренаж.dwg

09.02_Схема_дренаж.dwg

10.00_Вентиляция.dwg

С.01_Начало.dwg

С.02_Продолжение.dwg

С.03_Продолжение.dwg

С.04_Продолжение.dwg

С.05_Продолжение.dwg

С.06_Продолжение.dwg

С.07_Продолжение.dwg

С.08_Продолжение.dwg

С.09_Продолжение.dwg

01.01_Общие данные.dwg

01.02_Общие_данные.dwg

01.03_Общие_данные.dwg

02.01_Принц_схема.dwg

02.02_Перечень_сигналов.dwg

03.00_Рег. темп. Схема.dwg

04.00_Контроль_схема.dwg

05.00_Карта_параметров.dwg

06.00_ШУН. Схема.dwg

07.00_План_трасс.dwg

08.01_Кабельный_журнал.dwg

08.02_Кабельный_журнал.dwg

09.01 Отборное устройство датчик.dwg

09.02_Отборное устройство манометр.dwg

10.00 Установка КИП термопреобразователь.dwg

11.00 Установка биметаллических термометров на трубопроводах.dwg

С.01_Начало.dwg

С.02_Продолжение.dwg

С.03_Продолжение.dwg

С.04_Продолжение.dwg

С.05_Продолжение.dwg

Similar materials
- 29.08.2014