Производственно-отопительная котельная с котлами ДКВР-6,5-13
- Добавлен: 03.07.2014
- Размер: 2 MB
- Закачек: 2
Описание
Состав проекта
|
Компоновка котельной.dwg
|
Проектирование производственно-отопительной котельной с котлами ДКВР 6,5-13.docx
|
Тепловая схема котельной.dwg
|
Дополнительная информация
Содержание
Содержание
Введение
1 Описание и расчет тепловой схемы котельной
1.1 Краткое описание котельного агрегата ДКВР-6,5-
1.2 Описание тепловой схемы котельной
1.3 Расчет тепловой схемы котельной
1.4 Выбор числа устанавливаемых котлов
2 Выбор водоподготовительного оборудования
2.1 Состав природной воды
2.2 Показатели качества воды
2.3 Обработка воды для паровых котлов
2.4 Выбор схемы обработки исходной воды
2.5 Подбор натрий-катионитных фильтров
2.6 Подбор натрий-хлор-ионитных фильтров
2.7 Выбор солерастворителя
2.8 Выбор деаэратора
3 Расчет и выбор вспомогательного оборудования котельной
3.1 Выбор насосов
3.2 Выбор теплообменников
3.3 Выбор сепаратора непрерывной продувки
4 Расчет и подбор тягодутьевого оборудования
4.1 Описание схемы подачи воздуха и дымоудаления
4.2 Расчет объемов продуктов сгорания и КПД-брутто котлоагрегата
4.3 Выбор тягодутьевого оборудования
5 Топливоснабжение котельной
5.1 Описание газорегуляторной установки
5.2 Состав и функции оборудования ГРУ
6 Автоматика котельной
6.1 Общие требования к автоматизации
6.2 Параметры, подлежащие контролю
6.3 Автоматика безопасности котла
6.4 Сигнализация
6.5 Автоматическое регулирование
7 Описание архитектурно-строительной части котельной установки
8 Отопление и вентиляция помещения котельной
9 Список использованных источников
Введение
В данной курсовой работе выполнен проект производственно-отопительной котельной, расположенной в г.Владимир на реке Клязьме. В качестве топлива используется природный газ второй нитки газопровода Ставрополь-Москва.
Котельная используется для снабжения паром промышленного предприятия и для отопления жилого района. Тепловые нагрузки на технологические нужды – 9 тонн пара в час; на отопление и вентиляцию – 16 ГДж/час; на ГВС – 8 ГДж/час.
С производства конденсат возвращается с температурой tконд.техн.=75°С в количестве 65%
В котельной применяются котлы марки ДКВР6,513 производства Бийского котельного за-вода.
Теплоснабжение района осуществляется по двухтрубной закрытой схеме. Расчетные параметры теплоносителя: подающий трубопровод – 130°С; обратный трубопровод – 70°С.
2 Выбор водоподготовительного оборудования
Надежная и экономичная работа котельной установки в значительной степени зависит от качества воды, применяемой для питания котлов.
Источниками водоснабжения для питания котлов могут служить пруды, реки, озера (поверхностный водозабор), а также грунтовые или артезианские воды, городской или поселковый водопровод. Природные воды, обычно содержат примеси в виде растворенных солей, коллоидные и механические примеси, поэтому непригодны для питания котлов без предварительной очистки.
2.1 Состав природной воды
Твердые вещества, содержащиеся в воде, разделяют на механически взвешенные примеси, состоящие из минеральных и иногда органических частиц, коллоиднорастворенные ве-щества и истинно растворенные вещества. Количество вещества, растворенного в единице раствора (воде), определяет концентрацию раствора и обычно выражается в миллиграммах на килограмм раствора (мг/кг).
Вода, как и всякая жидкость, может растворять только определенное количество того или иного вещества, образуя при этом насыщенный раствор, а избыточное количество вещества остается в нерастворенном состоянии и выпадает в осадок.
Различают вещества, хорошо и плохо растворимые в воде. К веществам, хорошо растворимым в воде, относят хлориды (соли хлористоводородной кислоты) СаС12, МgС12, КаС1, к плохо растворимым — сульфиды (соли серной кислоты) СаSО4, МgSО4, N3SO4 и силикаты (соли кремниевой кислоты) СаSiO3, МgSiO3. Присутствие сульфидов и силикатов в воде приводит к образованию твердой накипи на поверхности нагрева котлов.
Растворимость веществ зависит от температуры жидкости, в которой они растворяются. Различают вещества, у которых растворимость увеличивается с ростом температуры, например СаС12, МgС12, Мg(NO3)2, Са(NO3)2, и у которых уменьшается, например СаSО4, СаSiO3, МgSiO3.
Обработка воды для паровых котлов
Исходными данными для выбора оборудования предварительной водоочистки является:
величина продувки котла;
содержание углекислоты в паре;
относительная щелочность котловой воды.
Обработка воды для водогрейных котлов включает в себя следующие основные этапы:
удаление взвешенных частиц;
удаление железа;
умягчение, предотвращение накипеобразования;
предотвращение коррозии (удаление кислорода и углекислого газа из питающей воды с помощью деаэраторов различных конструкций. Применение деаэратора позволяет существенно снизить содержание свободного кислорода (до 0,02 мг/кг), остальное же количество должно связываться химическим способом).
2.3.1 Удаление механических примесей с помощью фильтров
Для удаления осаждаемых (песок, окислы железа, соли CaCO3 и другие тяжелые частицы) и взвешенных частиц (мелкая глина, грязь и органические вещества) используются механические фильтры различных конструкций.
При незначительных механических загрязнениях (до 5,0 мг/кг), можно устанавливать компактные фильтры картриджного типа (сменные или промывные), основные достоинства которых - малые габариты, высокие скорость и глубина фильтрации.
При содержании в воде взвешенных частиц более 15 мг/л, целесообразно осуществлять фильтрацию на напорных фильтрах с комбинированным слоем (песок + антрацит).
Отфильтрованные частицы, по мере необходимости, удаляются из слоя противоточной промывкой.
Для проектируемой котельной применяем напорные фильтры с комбинированным слоем, т.к. применение картриджных фильтров нецелесообразно (содержание взвешенных веществ в осветляемой воде 8,0мг/кг).
2.3.2 Умягчение воды методом ионного обмена
Наиболее распространенным способом очистки воды для ее последующего использования в качестве теплоносителя являются методы ионного обмена. Сущность этих методов заключается в том, что вода фильтруется через специальный материал, называемый ионитом. Этот материал имеет способность изменять ионный состав воды в нужном направлении. С электрохимической точки зрения молекулы ионита представляют собой твердый электролит. В зависимости от того какой заряд несет диффузионный слой, иониты разделяются на катиониты и аниониты.
Наиболее распространенными катионитами являются: сульфоуголь и ионообменные смолы КУ 1, КУ 2. Наиболее распространенные аниониты: АН31, АВ-17, АВ18. В зависимости от качества исходной воды и требований к качеству обработанной воды в практике применяют следующие методы ионного обмена: натрийкатионирование, водород-катионирование, хлорионирование, аммоний-катионирование.
Na-катионирование - наиболее распространенный метод обработки воды. Заключается в фильтровании ее через слой катионита, содержащего обменный ион натрия.
При этом протекают следующие реакции:
Са(НСО)3 + 2NaR СаR2 + 2NaНСО3
Mg(НСО)3 + 2NaR MgR2 + 2NaНСО3
CaCl2 + 2NaR СаR2 + 2NaCl
MgSO4 + 2NaR MgR2 + Na2SO4
Как видно из приведенных реакций, кальциевые и магниевые соли, содержащиеся в воде, вступают в обменные реакции с катионитом, замещая в нем натрий и, тем самым, умягчая воду. Вместо кальциевых и магниевых солей в обрабатываемой воде образуется эквивалентное количество легко растворимых натриевых солей. Следовательно, солесодержание при обработке воды не снижается, а несколько увеличивается. Щелочность воды и анионный состав при Naкатионировании не изменяются.
Эксплуатация катионитного фильтра сводится к последовательному проведению следующих операций: умягчение, взрыхление, регенерация, отмывка.
Основная операция процесса – умягчение. При умягчении происходит реакция обмена катионов Ca2+ и Mg2+ на катионы Na+. По мере прохождения ионного обмена катионит истощается и уплотняется, обменные реакции замедляются вплоть до проскока катионов Ca2+ и Mg2+ в обработанную воду. Для восстановления обменной способности катионита его взрыхляют и регенерируют. Взрыхление осуществляется обратным потоком воды, подаваемой из бака, расположенного выше фильтра, или с помощью насоса. Регенерация осуществляется раствором поваренной соли NaCl. Последней операцией является отмывка (промывка) катионита от остаточных продуктов регенерации.
В практике применяются две схемы умягчения воды по методу Naкатионирования: одноступенчатая и двухступенчатая.
Одноступенчатым Naкатионированием можно получить воду с остаточной жесткостью до 0,1 мгэкв/кг. При необходимости более глубокого умягченния воды (до 0,01 – 0,02 мгэкв/кг) следует применять двухступенчатое (последовательное) Naкатионирование.
Число ступеней катионирования определяется требованиями к обработанной воде; так для паровых экранированных котлов, где требуется глубокое умягчение воды, целесообразно применение схемы двухступенчатого Naкатионирования; для горячего водоснабжения, требуется частичное умягчение воды, достаточно одной ступени катионирования.
Н-катионирование. Обработка воды методом Н-катионирования состоит в фильтровании ее через слой катионита, содержащего в качестве обменных ионов катионы водорода. Протекающие в водородном фильтре реакции сводятся к замене катионов Ca2+ и Mg2+ и Na+ на катион водорода. При этом протекают следующие химические реакции:
Ca(HCO3)2 + 2НR СаR2 + 2Н2O + СО2
Mg(HCO3)2 + 2НR MgR2 + 2Н2O + СО2
CaCl2 + 2НR CaR2 + 2HCl
MgSO4+2НR MgR2 + H2SO4
NaCl + НR NaR + HCl
Na2SO4 +2НR 2NaR + H2SO4
2HR + Na2SiO3 2NaR + H2SiO3
Следовательно, присутствующие в воде соли (сульфаты, хлориды и др.) превращаются в процессе ионного обмена в кислоты (серную, соляную и др.), т.е. обработанная вода имеет кислую реакцию (рН7), что недопустимо. Поэтому Н-катионирование всегда совмещается с Naкатионированием, которое обуславливает щелочную реакцию обработанной воды.
Принцип работы Нкатионитного фильтра аналогичен работе Naкатионитного фильтра. Регенерация фильтра производится раствором серной кислоты.
Различают следующие схемы НNaкатионирования:
НNaкатионирование с «голодной» регенерацией фильтров;
параллельное НNaкатионирование;
последовательное НNaкатионирование;
совместное НNaкатионирование.
Н-Na-катионирование с «голодной» регенерацией фильтров применяется для обработки вод с повышенной карбонатной жесткостью при сравнительно малом содержании солей натрия.
Параллельное НNaкатионирование применяется в тех случаях, когда вода, поступающая на фильтры, имеет Жк 0,5 Жо;
c_(SO_4^(2-))^ 〖+c〗_(Cl_^)^ 〖+c〗_(NO_3^)^ <7мг-экв/кг
и когда необходимо получить умягченную воду с заданной остаточной щелочностью не выше 0,35 мгэкв/кг.
Последовательное НNaкатионирование применяется для обработки сильно минерализованных вод с солесодержанием выше 1000 мг/кг при Жк < 0,5 Жо и при
c_(SO_4^(2-))^ 〖+c〗_(Cl_^)^ 〖+c〗_(NO_3^)^ <7мг-экв/кг
Совместное НNaкатионирование применяется в тех случаях, когда сумма анионов сильных кислот в воде, поступающей на фильтры, не превышает 3,5 мгэкв/кг и когда получаемая по этой схеме щелочность (Щост= 1 – 1,3 мгэкв/кг) не вызовет заметного увеличения продувки котлов сверх установленных норм.
Na-Cl-ионирование. NaClионитный метод основан на умягчении воды с одновременным снижением щелочности и осуществляется путем последовательного фильтрования обрабатываемой воды через Naкатионитный фильтр первой ступени, Clанионитный фильтр и затем Na катионитный фильтр второй ступени.
Вторую ступень Naкатионирования, как правило, совмещают в одном фильтре с Clионированием, при этом внизу загружается катионит, а сверху сильноосновный анионит типа АВ – 17.
В этом методе катионит и анионит регенируются поваренной солью NaCl (Na+ регенерирует катионит, Cl - анионит). В фильтрах первой ступени происходит умягчение воды по реакциям. Во второй ступени (в совмещенном NaClионитном фильтре) в слое анионита происходит обмен анионов SO42, NO3-, NO2, HCO3-, содержащихся в воде, на хлор, а в слое катионита «проскочившие» катионы жесткости обмениваются на Na+.
При этом в анионите протекают следующие реакции:
Na2SO4 + 2АнCl АнSO4 + 2NaCl
NaNO3 + АнCl АнNO3 + NaCl
NaНСO3 + АнCl АнНСO3 + NaCl
Методом NaClионирования воды можно снизить жесткость воды до 0,01 мгэкв/кг и щелочность до 0,2 мгэкв/кг.
Компоновка котельной.dwg
Тепловая схема котельной.dwg
Рекомендуемые чертежи
- 24.01.2023
- 04.11.2022