• RU
  • icon На проверке: 50
Меню

Технолог пр-с востановления головки блока

  • Добавлен: 03.07.2014
  • Размер: 4 MB
  • Закачек: 0
Узнать, как скачать этот материал

Описание

Курсовой проект - Выбор оптимального метода восстановления зеркала цилиндров ДВС. Чертежи, пояснительная записка

Состав проекта

icon
icon Лист 1 - Плакат (А1).cdw
icon Лист 2 - Компоновка расточного станка (А1).cdw
icon Лист 3 - Расточная головка в сборе (А2).cdw
icon Лист 4 - Корпус головки (А2).cdw
icon Курсовая работа.doc

Дополнительная информация

Содержание

Введение

1.Особенности конструкции гильз цилиндров

2.Основные дефекты и причины возникновения

2.1.Износ внутренней поверхности цилиндров

2.2.Кавитационное изнашивание

2.3.Излом бурта гильзы

2.4.Трещины на поверхности гильзы

2.5.Износ посадочных поясков гильзы

3.Выбор способа восстановления гильз

3.1.Растачивание под ремонтный размер

3.2.Шлифование внутренней поверхности

3.3.Электроимпульсное нанесение покрытий

3.4.Восстановление электролитическими покрытиями

3.5.Гальваномеханический способ восстановления

3.6.Восстановление термопластическим деформированием

3.7.Способ постановки ремонтных втулок

4.Разработка технологической карты

4.1.Определение месячной партии деталей

4.2.Выбор баз

4.3.Разработка технологического процесса восстановления гильз цилиндров двигателя ЗиЛ-

4.4.Расчет припусков на обработку

4.5.План технологических операций

4.6.Расчет режима обработки и норм времени

4.7.Выбор оборудования

4.8.Расчет количества ремонтных рабочих, рабочих мест, фонда времени и количества оборудования

5.Охрана труда

5.1.Меры безопасности при ремонте гильз ДВС

5.2.Обеспечение пожарной безопасности при восстановлении гильз

Заключение

Список информационных источников

Введение.

О надежности и долговечности машины судят обычно по стабильности рабочих характеристик, заложенных в ней при изготовлении. В условиях эксплуатации стабильность рабочих характеристик двигателя может нарушаться вследствие многих причин, вызывающих неисправности его механизмов и систем. Неисправности могут возникнуть в результате нарушения регулировок, устранимых в процессе эксплуатации, или вследствие естественного износа деталей сопряжений, не устранимого простой регулировкой.

Долговечность, как правило, определяется естественным износом сопрягаемых деталей, в основном износостойкостью таких сопряжений, как гильза цилиндра – поршень, поршневое кольцо – канавка поршня, поршневой палец – бабышка поршня, поршневой палец – втулка шатуна, шейки коленчатого вала – подшипники, клапан – гнездо клапана в головке цилиндров.

Поддержание коэффициента технической готовности на высоком уровне в значительной мере определяется степенью удовлетворения их потребностей в запасных частях.

Обеспечение потребностей предприятий по эксплуатации и ремонту техники в запасных частях осуществляется за счет изготовления и восстановления деталей. В этих условиях большое внимание должно уделяться экономному использованию материальных средств, развитию работ по восстановлению деталей. При этом в 5 – 8 раз сокращается объем технологических операций по сравнению с изготовлением новых одноименных изделий. Стоимость восстановления, как правило, на 30 – 50% ниже затрат на производство новых аналогичных изделий.

На различных типах предприятий разработаны и усовершенствованы технологические процессы и оборудование, которые позволяют восстанавливать многие детали автомобилей прогрессивными методами, обеспечивающими их послеремонтные ресурсы на уровне, близком к доремонтным.

Научно-исследовательские и учебные институты проводят различные исследования в области совершенствования организации ремонта и восстановления деталей.

Соединение гильза цилиндра – поршень является одним из соединений, подвергающихся наибольшему износу в двигателях внутреннего сгорания. Поэтому разработка технологии ремонта гильз является важной задачей для улучшения качества ремонта двигателей.

Целью нашей работы является подробно описать методы восстановления зеркала гильз цилиндров ДВС и выбрать оптимальный.

Для достижения данной цели необходимо решить следующие задачи:

- Определить, что есть цилиндр ДВС, их особенности;

- Выявить виды деффектов цилиндров / гильз;

- Дать характеристику каждому методу восстановления зеркала цилиндров;

- Разобрать подробно оптимальный метод восстановления;

- Определить приемы охраны труда при работах по восстановлению зеркала цилиндров.

2.4.Трещины на поверхности гильзы.

Причиной появления трещин в деталях являются, в первую очередь, ненормальные условия их работы, а именно, сильный перегрев, быстрое охлаждение, ударные нагрузки и т.д. Трещины могут возникнуть также вследствие нарушения технологии ремонта. Перетяжка болтов головки блока на некоторых двигателях может стать причиной образования трещин на поверхности гильз. Эксплуатация двигателя в холодное время года на воде в системе охлаждения – также достаточно распространенная причина появления трещин в блоке и гильзах цилиндров после замерзания воды.

Трещина, возникшая в той или иной детали, редко локализуется, т.е. остается неизменной длительное время. В большинстве случаев, испытывая циклические рабочие нагрузки и циклы нагреваохлаждения, трещина развивается дальше до поломки детали. Последствия и скорость развития трещины зависят от типа детали, материала и сечения, по которому проходит трещина. Для ответственных деталей КШМ и поршневой группы, включая коленчатый вал, шатуны и поршневые пальцы, трещина, независимо от места ее образования, практически всегда приводит к разрушению детали и выходу двигателя из строя.

В корпусных деталях типа блока цилиндров и головки блока, а также гильзах трещины, как правило, проходят в полость системы охлаждения, соединяя ее с каналами систем смазки, вентиляции картера, цилиндрами, либо с окружающей средой, вызывая течи и / или перемешивание рабочих жидкостей. Помимо этого, через трещины в стенке цилиндра или камеры сгорания в систему охлаждения при работе двигателя поступают отработавшие газы, которые вытесняют охлаждающую жидкость, резко снижая эффективность охлаждения двигателя.

Трещины в нижней части гильзы обычно связаны с ударами разрушенного шатуна и, как правило, располагаются вертикально.

Установка на двигатель детали с трещиной приводит обычно к его неработоспособности (выходу из строя) сразу после первого запуска или через определенное время, т.е. к необходимости повторного ремонта. Кроме того, традиционные виды ремонта рабочих поверхностей детали с трещиной (шлифование, хонингование и т.д.) иногда приносят убытки ремонтному предприятию, так как деталь с трещиной заведомо неремонтопригодна и требует замены. Учитывая это, обнаружению трещин в деталях перед ремонтом должно быть уделено самое серьезное внимание.

2.5.Износ посадочных поясков гильзы.

Износ посадочных поясков частично связан с кавитационным изнашиванием. Признаком дефекта гильз являются глубокие раковины на поверхности поясков, что является следствием явления кавитации или коррозии.

В процессе работы возникает вибрация гильзы, что также вызывает износ посадочных поясков гильзы.

В реальных условиях эксплуатации двигателей возможно появление овальности посадочных поясков гильзы, вызванное кавитационным разрушением или отложением накипи в зазорах посадочных поясков гильзы в блоке.

Далее, в курсовом проекте, будет рассматриваться первый вид дефектов - износ внутренней поверхности цилиндров (гильз).

3.Выбор способа восстановления гильз.

В ремонтной практике восстановление изношенных автотракторных деталей производится разными способами и выбор того или иного способа в конкретных условиях определяется или экономическими соображениями или производственными возможностями ремонтных мастерских (наличием соответствующего технологического оборудования).

Для гильз принята следующая схема технологического процесса ремонта:

1) правка;

2) восстановление размеров посадочных поясков;

3) устранение неисправностей опорного буртика;

4) восстановление внутренней рабочей поверхности;

5) цинкование наружной поверхности;

6) контроль.

В курсовом проекте рассматривается восстановление внутренней рабочей поверхности.

Восстановление внутренней поверхности.

При всем многообразии применяемых в производстве ремонтных операций все же многие из них можно сгруппировать в типовые группы с одинаковым технологическим процессом и из общей технологии ремонта выделить наиболее часто встречающиеся способы восстановления деталей.

Технологическая однородность ремонтных операций является основным классифицирующим признаком, по которому можно разделять все способы ремонта следующим образом:

1). восстановление изношенных деталей способом ремонтных размеров;

2). восстановление изношенных деталей наплавкой;

3). восстановление изношенных деталей металлизацией;

4). восстановление изношенных деталей гальваническим способом;

5). восстановление изношенных деталей путем раздачи и осадки их;

6). восстановление изношенных деталей путем поворачивания их другой, нерабочей стороной;

7). восстановление изношенных деталей при помощи добавочных деталей, имеющих форму втулок, гильз или колец;

8). восстановление изношенных деталей путем замены изношенной части новой.

3.4.Восстановление электролитическими покрытиями.

Сущность способа состоит в том, что при прохождении постоянного электрического тока через раствор-электролит в нем образуются положительно и отрицательно заряженные ионы. Положительно заряженные ионы перемещаются к отрицательному электродукатоду, которым является металлическая деталь, и осаждаются на ее поверхности, прочно с ней сцепляясь. Отрицательно заряженные ионы перемещаются к положительному электроду-аноду и выделяются на нем. В качестве электролитов, как правило, применяются водные растворы солей, кислот и щелочей.

Количество веществ, выделившихся при электролизе, пропорционально количеству электричества, прошедшего через раствор. Количество вещества в граммах, выделяемого из электролита при прохождении через, него тока в 1 ампер в течение часа, называется электрохимическим эквивалентом данного вещества (с, г/Aч). Плотность тока (DK, A/дм2) называют отношение силы тока к покрываемой или обрабатываемой поверхности детали.

Осажденные при электролизе металлы отличаются по своим свойствам от литых металлов тем, что кристаллическая решетка их искажена вследствие различных условий кристаллизации. Изменяя режим электролиза (плотность тока, температуру и состав ванны), можно в значительной степени изменить и механические свойства осажденных металлов.

Образование покрытий высокого качества во многом зависит от рассеивающей и кроющей способности гальванической ванны. Под рассеивающей способностью понимают степень равномерности металлического осадка на различных частях покрываемой детали, имеющей неправильную форму. Под кроющей способностью понимают возможность ванны покрывать имеющиеся на катоде углубления. Улучшить рассеивающую и кроющую способность ванны можно конструкцией подвески для деталей и формой анодов, а также применением экранов.

Наибольшее распространение при восстановлении деталей нашли электролитические (гальванические) процессы хромирования и осталивания.

Хромирование. Применяется в тех случаях, когда покрытие должно иметь очень высокую твердость и износостойкость. Электролитический хром обладает твердостью от НВ 400 до НВ 1200, а также высокой износостойкостью, низким коэффициентом трения (0,13 при трении по баббиту и 0,16 при трении по стали), высокой теплопроводностью, низким коэффициентом линейного расширения. Электрохимический эквивалент хрома равен 0,324 г./A – ч.

Хромовые электролиты представляют собой растворы хромовой кислоты Н2СrO4, образующейся при растворении хромового ангидрида СгО3 в воде. Для осаждения хрома на катодедетали, в раствор нужно добавить серную кислоту Н2SО4. При этом наилучшие по качеству осадки и наибольший выход хрома по току получаются при соотношении СгО3: Н2SО4= 100. Выход хрома по току очень мал – всего 13–15%. Установлено, что нормальный процесс хромирования обеспечивается, если трехвалентный хром содержится в пределах от 5 до 20 г./л. Это может быть обеспечено, если площадь анодов будет в 1,8–2 раза больше площади катодов-деталей.

В качестве анода при хромировании применяют рольный свинец с добавлением 6–12% сурьмы. В процессе работы ванны аноды окисляются, и их следует периодически очищать.

Технологический процесс износостойкого хромирования деталей состоит из следующих операций:

1.Очистка деталей от масла и грязи.

2.Предварительное шлифование для придания деталям правильной геометрической формы и получения необходимой шероховатости.

3.Промывка. Детали промывают в горячем щелочном растворе, протирают венской известью, промывают в проточной воде.

4.Изоляция подвески и поверхностей деталей, не подлежащих хромированию. Изолируют обычно цапонлаком (раствором целлулоида в ацетоне), перхлорвиниловым лаком 9–32 или клеями АК20 и БФ, которые наносят в 2–3 слоя.

5.Навешивание (установка) деталей на подвеску.

6.Обезжиривание. При химическом обезжиривании детали промывают в бензине или в водном растворе, нагретом до 60–70° С в течение 3–5мин.

При электрохимическом обезжиривании детали навешивают на подвеску и погружают в ванну с горячим водным раствором. Раствор подогревают до 70–75° С и выдерживают в нем детали в течение 5–8 мин при плотности тока 3–10 A/дм2 и напряжении 8–10 B.

7.Анодное декапирование. Производится в целью удаления с поверхности обезжиренных деталей, окисных пленок и выявления структуры детали. Для этого подвеску с деталями загружают в специальную ванну со слабым раствором серной кислоты в воде (3–5 г./л) и выдерживают в течение 1–2 мин. После этого детали промывают в дистиллированной воде.

8.Хромирование. Для получения твердых износостойких покрытий чаще всего применяют следующий состав ванны и режим хромирования: 150–200 г./л хромового ангидрида и 1,5–2,0 г/л серной кислоты; плотность тока 35–45 А/дм2 и температура электролита 56–58° С.

9.Промывка. По окончании процесса хромирования подвески с покрытыми деталями промывают в дистиллированной воде для сбора электролита, а затем последовательно в проточной воде, в 3–5%ном растворе щелочи для нейтрализации, снова в проточной воде и наконец в подогретой до 70–80° С воде.

10.Демонтаж (снятие) деталей с подвески и удаление изоляции.

11.Термообработка деталей для устранения их водородной хрупкости. Детали обычно нагревают в сушильных шкафах или в масляной ванне до температуры 150–220° С и выдерживают в течение 1,5–2,0 ч.

Реверсивное хромирование позволяет в 2 раза увеличить скорость отложения хрома, повысить на 1 – 2 класса чистоту покрытия по сравнению с обычным хромированием. При реверсивном хромировании периодически меняют полярность тока: продолжительность катодного периода 10–15 мин, а анодного – 10 – 15 сек. Состав электролита обычный (СгО3 – 200 – 250 г./л и Н2SO4 – 2,0 – 2,5 г/л) при повышении плотности тока до 60 – 150 A/дм2.

Струйное хромирование цилиндрических поверхностей валов и осей дает возможность в 4–8 раз повысить производительность процесса, не снижая качества покрытия. При струйном хромировании деталей на специальных установках электролит интенсивно перемешивается и постоянно обновляется в зоне, непосредственно прилегающей к покрываемой поверхности катода.

Осталивание. Выход металла по току при осталивании в 5– 7 раз выше, чем при хромировании, и равен 75–95%, а скорость отложения осадка в 10 раз больше (0,4 мм за час). При осталивании можно получить покрытия толщиной до 2 мм.

Для твердого и износостойкого осталивания обычно применяют хлористые электролиты следующего состава: хлористое железо FеС12 – 200–500 г./л, хлористый натрий NaС1 – 100 г./л, соляная кислота НС1 – 0,5–0,9 г/л, хлористый марганец MnCl2 –10 г./л. Аноды изготавливают из малоуглеродистой стали. Общая площадь анодов должна быть в 2 раза больше покрываемой поверхности деталей.

Твердость, вязкость и износостойкость покрытий при осталивании можно изменять в широких пределах, изменяя состав электролита, его температуру и плотность тока. При малой плотности тока и высоких температурах электролита получают мелкозернистые вязкие покрытия. С повышением плотности тока увеличивается твердость покрытий.

Технологический процесс осталивания анологичен хромированию.

Недостатком восстановления гильз электролитическими покрытиями является небольшая толщина наносимого покрытия, большая продолжительность нанесения покрытия и неравномерность наносимого слоя.

3.5.Гальваномеханический способ восстановления.

Проведенные исследования показали, что применение гальваномеханического способа при восстановлении деталей машин наиболее полно удовлетворяет требованиям ремонтного производства. Отличительной его особенностью является то, что в процессе электролиза покрываемая поверхность подвергается механическому активированию (царапанию) абразивными или алмазными инструментами в виде лент или брусков, которые перемещаются в межэлектродном пространстве.

Механическое активирование способствует снижению перенапряжения разряда оседаемого металла за счет уменьшения концентрационных ограничений, интенсивного удаления с поверхности катода адсорбировавшихся гидридов, гидроокисей и газообразного водорода. Все это позволяет в десятки раз увеличивать рабочие плотности тока при нанесении хрома, никеля, кобальта, меди и существенно повышать скорость их осаждения.

Данный способ представляет собой разновидность электрохимического хонингования, где в качестве СОЖ используется электролит для нанесения соответствующего металла, и сводится к предварительному хонингованию, электроосаждению металла с одновременным хонингованием при незначительном давлении брусков и к окончательному хонингованию для получения необходимой геометрии обрабатываемой поверхности. Таким образом, весь технологический процесс осуществляется с одной установки на одном и том же оборудовании.

Постоянное хонингование обрабатываемой поверхности во время электроосаждения, высокая скорость циркуляции электролита при малом межэлектродном зазоре обеспечивают высокую скорость осаждения металла, которая в 20 – 50 раз выше, чем при стационарных условиях нанесения покрытий.

Технологический процесс сводится к обезжириванию, промывке в воде, гальваномеханическому процессу нанесения покрытий (декапирование 15…85 с, нанесение покрытия с выходом на режим в течение 8…10 мин, с плавным увеличением Dк и Ра до оптимального), последующей промывке детали в проточной воде, их нейтрализации и ополаскиванию.

Разработана и изготовлена технологическая оснастка для восстановления зеркала гильзы цилиндра ЯМЗ238, 236, Д50 (Д240). Прошли апробацию в условиях опытного производства технологический процесс и установка для восстановления зеркала гильз цилиндров Д50 (Д240), а также произведены стендовые испытания трех серий гильз, восстановленных по разработанной технологии, которые показали высокую работоспособность деталей.

Недостатком данного способа является сложность приобретения

необходимого оборудования, сравнительно высокая стоимость материалов, используемых при восстановлении.

Контент чертежей

icon Лист 1 - Плакат (А1).cdw

Лист 1 - Плакат (А1).cdw
Методы восстановления
зеркала цилиндров ДВС
ТГПУ им. Л.Н. Толстого
Методы восстановления работоспособности зеркала цилиндра ДВС.
Процесс наплавления металла
Наладка оборудования
Хонинговальный станок
Обработанная поверхность цилиндра

icon Лист 2 - Компоновка расточного станка (А1).cdw

Лист 2 - Компоновка расточного станка (А1).cdw
Компоновка расточного
ТГПУ им. Л.Н. Толстого
Кран управления установить в месте удобном
Несоосность осей шпинделей головок станка
и отверстия приспособления не более 0.005.
Допуск параллельности осей шпиндельных головок
станка и осей посадочных отверстий приспо-
собления направлению движения стола не более
025 на длине 500 мм.
собления в вертикальной плоскости не более
Кулачки в пазу подвижного стола установить
обеспечив выполнение цикла работы
Выдержка времени для торможения шпинделей

icon Лист 3 - Расточная головка в сборе (А2).cdw

Лист 3 - Расточная головка в сборе (А2).cdw
ТГПУ им. Л.Н. Толстого
Термообработка-закалка
*Размер для справок.
Остальные техтребования по ГОСТ 10083-81

icon Лист 4 - Корпус головки (А2).cdw

Лист 4 - Корпус головки (А2).cdw
Сталь 40Х ГОСТ 4543-71
ТГПУ им. Л.Н. Толстого
Термообработка-Нормализация
Отверстия центровочные А1.Б ГОСТ 14034-74.
*Размер для справок.
Остальные техтребования по ГОСТ 10083-81

Свободное скачивание на сегодня

Обновление через: 9 часов 54 минуты
up Наверх